第四百四十五章 九个方向-《万能数据》


    第(2/3)页

    程诺咕咚咕咚喝了半瓶,等嗓子里那种不适感过去,道,“之前说到哪了,哦,我讲完第三个证明法了,下面说第四个。”

    程诺忘了一眼在那握笔准备记录的队友道,“如果累了的话,可以让他帮你。”

    说完,程诺便接着上面开始讲。

    “第四个,利用解析数论的证明,这个方法和我上面用代数数论的证明方法有异曲同工之妙,你们都知道,欧拉乘积公式是:Σnn-s  =Πp(1  -  p-s)-1  (s  >  1),左侧经解析延拓后,可变为解析数论中极重要的函数:黎曼ζ函数ζ(s)。”

    “对于  s  =  1,欧拉乘积公式的左侧是被称为调和级数的发散级数……”

    程诺清了清嗓子,继续说,“上面这几个都是和数论有关的,下面我再说几个其他领域方向的证明方法。”

    在两人瞠目结舌下,程诺娓娓说道,“第五个,可以利用组合证明的方法。证明的思路是这样的:任何正整数  N  都可写成  N  =  rs2  的形式,其中  r  是不能被任何大于  1  的平方数整除的正整数,  s2  则是所有平方数因子的乘积。假如素数只有  n  个,则在  r  的素数分解中……”

    “呃,程诺,你能不能再讲一遍。”负责记录的那位学生挠挠头,略显尴尬的说道,“我刚才光顾得愣神,忘了记录了。”

    程诺无奈的耸耸肩,“好吧,我再说一遍,这次你们可要认真听。”

    篝火的火光映在程诺侧脸上,显得光辉无比。

    程诺座下两位博士生宛若乖宝宝般齐齐点头,一副学生虚心受教的姿态。

    “……第六个,利用拓扑的方法证明。”

    两人顿时疑窦丛生。

    程诺察觉到他们疑惑的小眼神,哈哈笑了笑,“我明白你们心中的疑惑,拓扑学似乎和数论是两个很不想干的领域,为什么我却这么说。等我讲完,你们就清楚了。”

    “我们可以定义整数集上的一个拓扑,其开集由且仅由空集?及算术序列  a?+  b  (a  ≠  0  和  b  皆为整数)的并集组成。不难证明,如此定义的开集满足拓扑的定义,即:……”

    “……由此,便得知素数有无穷多个。你们现在明白了吗?”

    两人齐齐小鸡啄米般点头,脑中不断回味着程诺的话语。

    但程诺并没有留给两人太多回味的时间。

    在脑海中简单过一遍思路,程诺便讲述下一个证明法。
    第(2/3)页